
J .  Fluid Mech. (1992), vol. 241, p p .  233-260 
Printed in Great Britain 

233 

Numerical experiments on two-dimensional foam 

By THOMAS HERDTLE AND HASSAN AREF 
Department of Applied Mechanics and Engineering Science, University of California at San 

Diego, La Jolla, CA 92093-0411, USA 

(Received 26 August 1991 and in revised form 23 January 1992) 

The statistical evolution of a two-dimensional polygonal, or ‘dry’, foam during 
diffusion of gas between bubbles lends itself to a very simple mathematical 
description by combining physical principles discovered by Young, Laplace, Plateau, 
and von Neumann over a period of a century and a half. Following a brief review of 
this ‘ canonical ’ theory, we report results of the largest numerical simulations of this 
system undertaken to date. In particular, we discuss the existence and properties of 
a scaling regime, conjectured on the basis of laboratory experiments on larger 
systems than ours by Glazier and coworkers, and corroborated in computations on 
smaller systems by Weaire and collaborators. While we find qualitative agreement 
with these earlier investigations, our results differ on important, quantitative details, 
and we find that the evolution of the foam, and the emergence of scaling, is very 
sensitive to correlations in the initial data. The largest computations we have 
performed follow the relaxation of a system with 1024 bubbles to one with O( lo), and 
took about 30 hours of CPU time on a Cray-YMP supercomputer. The code used has 
been thoroughly tested, both by comparison with a set of essentially analytic results 
on the rheology of a monodisperse-hexagonal foam due to Kraynik & Hansen, and 
by verification of certain analytical solutions to the evolution equations that we 
found for a family of ‘fractal foams’. 

1. Introduction 
The coarsening of a foam due to diffusion of gas from small bubbles, where the 

pressure is large, to large bubbles, accompanied by the intermittent disappearance of 
small bubbles, and the reconnection of soap films within the foam, is a fascinating 
dynamical process. In two dimensions the formation of ever larger bubbles reminds 
one of the ‘inverse’ cascade in two-dimensional turbulence, that has been the object 
of considerable study. 

It is at first sight surprising that the evolution of a two-dimensional ‘dry ’ foam can 
be completely expressed in terms of the vertices of the bubbles and their pressures, 
so that a fully deterministic, finite system of evolutionary equations results. The 
ingredients in this description are : (i) the Young-Laplace law, formulated in 1805-6, 
for the pressure difference across a two-fluid interface with surface tension; (ii) 
Plateau’s (1873) rule that films in the foam meet three a t  a time a t  angles of 120’; 
and (iii) von Neumann’s (1952) law that the rate of change of area of an n-sided 
bubble due to gaseous diffusion is proportional to n-6. The fusion of these three 
physical principles makes up what we call the ‘ canonical ’ model of two-dimensional 
foam evolution. We explain the physics of this model in more detail in $2. 

This paper reports numerical experiments using our implementation of the 
canonical model in a computer code. Numerical considerations, and details of the 
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implementation, which differs from the pioneering work of Weaire & Kermode 
(1983a, b ;  1984; see also Kermode & Weaire 1990), are the subject of $3. Our code 
treats, we believe for the first time, the fully coupled system of bubbles in the foam, 
and thus captures certain long-range correlations that appear to be significant for the 
statistics. We have found that rather large computations are required to capture 
statistical scaling behaviour in this system. Such computations are quite time- 
consuming. The relaxation of some 1000 bubbles in the initial state to a few in the 
final state required on the order of 30 CPU hours on a single processor of a Cray- 
YMP8/864 supercomputer. The computer time per step was optimized to be 
O ( W 3 ) ,  where N is the number of bubbles. Preliminary results on smaller systems 
(using a less efficient code) were reported by Herdtle & Aref (1989) and Aref & 
Herdtle (1990). The latter paper reviews numerous ‘topological’ properties of two- 
dimensional foam, that we shall use here on several occasions without further 
development. 

Before embarking on large simulations, i t  is essential to verify the code constructed 
on a number of smaller test calculations where analytical answers are known. We 
have conducted two main tests of this kind. In one series of computations we 
reproduced the rheological properties found by Kraynik & Hansen (1986) for a 
monodisperse-hexagonal foam. I n  a second development we found a family of 
analytical solutions for the relaxation of ‘fractal foam ’, decorating a vertex between 
larger bubbles, and we verified that these solutions are tracked by our code to 
machine precision. The analysis of the fractal foams has been published separately 
(Herdtle & Aref 1991~) .  We discuss code verification in $4. 

I n  $5 we report our simulation results for large systems. We have conducted 
several numerical experiments starting from 1024 bubbles. The initial states were 
obtained using the Voronoi construction, as has become rather standard in 
simulations of this kind (see $3.3). Simple topological considerations show that the 
average number of sides per bubble is (n) = 6. Hence, the lowest-order moment of 
p(n) ,  the number-of-sides frequency distribution, that is useful for differentiating 
bubble patterns is the second moment 

Pz = ( ( n - 6 ) 2 ) .  (1 .1)  

We present results for several initial values of this parameter, as has been done 
recently also by Weaire & Lei (1990). 

The main result to be found in the literature on statistical evolution of two- 
dimensional foam, coming both from laboratory experiments on large systems with 
up to  loo00 bubbles by Glazier, Gross & Stavans (1987 ; see also Glazier 1989 ; for a 
popular account see Maddox 1989), and from numerical simulations of much smaller 
systems (Weaire & Lei 1990), is the emergence of a scaling state with a value of 
,uZ = 1.42k0.05. The corresponding scaling form of the distribution p(n) in 
experiments has a slightly higher value of p(5 )  than p(6 ) .  Another scaling result is the 
existence of a power-law regime for the number of bubbles versus time, N oc t-a, 
where values of a x 0.6 are given from experiment. Recent experiments by Stavans 
(1990), where a better approximation to the ‘dry’ foam limit that is used in the 
simulations is achieved by continually draining the foam, report scaling values of 
a x  1.0. 

We have monitored the above scaling predictions in our simulations, along with a 
host of other statistical diagnostics. We find values of ,uz x 1.2 for the scaling regime, 
a scaling function p(n)  that peaks a t  n = 6, and a steep power-law decay for the 
number of bubbles with time corresponding to  a GZ 1.S1.2.  We find that there can 
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be very long transients so that for some initial states the system never really settles 
down to a scaling state. 

We have also performed a large simulation starting from an initial condition that 
is unstressed to assess any influence this might have on the results. (All previous 
simulations have had some net stress along the periodic boundaries.) We have 
performed a simulation for a foam contained within a rigid, circular container to see 
if the boundary conditions have an effect on statistics, since they do, clearly, have 
an effect on asymptcltic states (Aref & Herdtle 1990). This simulation is also of 
interest to the experimental situation where any effect of bounded containers cannot 
easily be eliminated. Realizing that the effect of initial conditions can be extremely 
long-lived, we have also artificially suppressed the number of hexagons in the initial 
state to remove any bias towards hexagons, which appear as the most favoured 
shape later on. We found that the distribution p(n)  at large times returned to an 
equilibrium with p(6 )  > p(5 ) .  All these results are discussed in $5.  

There are several reasons one can list that a laboratory experiment in a shallow 
container with rigid boundaries might deviate from the canonical model, and 
inconsistencies between experimental measurements and dry foam simulations are to 
be expected. The disagreement with earlier numerical simulations, allegedly solving 
the same system of equations, is more troubling. However, the differences in 
implementation between our work and the earlier work (Weaire & Kermode 
1983a, b ;  1984; Kermode & Weaire 1990) are non-negligible. We revisit them in our 
final § 6, where the main results obtained are summarized and discussed, conclusions 
are drawn, and various possible extensions of the work are commented upon. 

2. Physics of two-dimensional ‘ dry ’ foam : the canonical model 
The nature of the real-space structure being considered is a tiling of the plane 

(Griinbaum & Shephard 1987) by polygonal tiles with sides that are circular arcs. 
This comes about because of the Young-Laplace law, which states that the pressure 
difference, Ap,  across a film is 

Here cr is the surface tension coefficient, and R, and R, are the principal radii of 
curvature of the surface. It is assumed that cr is constant throughout the foam, and 
constant in time. The factor of two arises because there are two liquid-gas surfaces 
to the film. In two dimensions, of course, one of the radii of curvature is infinite, and 
( 2 . 1 )  implies that each film is a circular arc. This is a tremendous simplification! It 
is possible to have foams in three dimension where each surface is a portion of a 
sphere (cf. Herdtle & Aref 1991 b ; Sullivan 1991) but in general this may not even be 
a good approximation. 

The tiling provided by a two-dimensional foam is tri-valent (in the terminology of 
Grunbaum & Shephard 1987) according to Plateau’s (1873) rule that three films must 
meet in an edge. (In two dimensions the edges are the vertices of the foam.) Since the 
three angles must all equal 120°, the tiling is also monogonal in Griinbaum & 
Shephard’s (1987) classification. Physically, the equality of the three angles at  each 
vertex of the two-dimensional tiling is due to the elastic forces within the soap films. 
It is assumed that the elastic relaxation to 120’ angles is so rapid compared to the 
process of gas diffusion between bubbles that we may treat it as instantaneous. 

It is also appropriate to  comment on the use of the word ‘dry ’. In a real foam some 
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liquid will collect at the vertices, i.e. within the edges a t  which the films meet. This 
liquid forms what are called Plateau borders or Gibbs rings (cf. Isenberg 1978). The 
amount of liquid available for these borders depends on the total amount of liquid 
left in the foam. I n  the model discussed here the Plateau borders are assumed to be 
so small that we may ignore them. This is the limit of a ‘dry’ foam to which the 
‘canonical ’ model pertains. Recently, attempts have been made to include the 
Plateau borders by ‘decorating’ the vertices in a dry foam with pockets of liquid 
(Bolton & Weaire 1991). Plateau borders complicate the problem considerably, and 
we have not attempted to include them in our description. 

The final ingredient required for the canonical model is a ‘rule ’, first noticed by von 
Neumann (1952), which states that the rate of change of area of an n-sided bubble 
in a two-dimensional foam is proportional to n- 6. The physical basis for this rule is 
that gas diffuses from bubble to bubble with a flow rate through any given soap film 
that is proportional to the pressure difference across that film (see, for example, the 
discussion by Princen & Mason 1965). The total flux of gas from one bubble to a 
neighbouring bubble is proportional to the pressure difference times the length of the 
common film. This length can be written as the radius of the arc in question times 
the opening angle. Since the pressure difference is inversely proportional to the radius 
by the Young-Laplace law, the gas flux across a film ends up being proportional 
simply to the opening angle of the film arc. Summing these angles over the closed 
polygonal bubble, and recalling that the angles between arcs a t  each vertex are 120°, 
immediately gives the result 

d A n :  
dt 3 
2- - -Ka(n-6), 

where K is a constant proportional to the permeability of the soap films (again 
assumed to be the same throughout the foam, and constant in time). 

In  Aref & Herdtle (1990) we also discussed the modification of (2.2) that occurs for 
bubbles adjacent to a rigid boundary. A simple extension of the arguments above, 
noting that no gas can escape through the side made up of a rigid boundary, gives 
the result 

!f% dt = Ka{3n-5)+f3} 

for bubbles on the boundary. Here 8 is the angle (in radians) through which the 
tangent to the boundary has turned from one point of contact between bubble film 
and rigid surface to the other. The rigid boundary is assumed to be wetted by soap 
film so that bubble sides come into it a t  90” angles. Equations (2.2)-(2.3) as written 
are consistent in the sense that (2.2) pertains to bubbles in the interior of a bounded 
foam, while (2.3) governs the evolution of bubbles on the boundary. 

The physical picture developed so far allows us to write evolution equations for the 
two-dimensional foam. Our basic degrees of freedom are the two coordinates of each 
vertex in the foam, and the pressures of all the bubbles. Since the pressure differences 
between bubbles give us the radii of the sides, we can use elementary plane geometry 
to write formulae for the areas of all bubbles in terms of the variables given. There 
is one indeterminacy here. Given two points and a radius, there are really two 
circular arcs with the given radius that will pass through the two points. These two 
arcs are illustrated in figure 1. We consistently choose the ‘shorter’ of the two arcs 
on the basis that the foam will seek to minimize the total film length (and on the basis 
of experimental observations). 
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FIGURE 1. Illustrating the two possible arcs of a given radius passing through two given points. The 
shorter of the two arcs is chosen as the film configuration in a doubly periodic foam for a given 
pressure difference. 

We may also write formulae for the angles formed between films at  a vertex. We 
know that these angles should be 120", but consider the formulae to have been 
written for the general case. In summary, we have a set of expressions for areas and 
angles a t  vertices in terms of vertex coordinates and bubble pressures. We choose two 
angles a t  each vertex, since the third angle is obtained by subtracting the sum of the 
chosen two from 360". We see that the number of dependent variables, one area per 
bubble and two angles per vertex, are equal in number to the independent variables, 
one pressure per bubble and two coordinates per vertex. 

Collect the independent variables into a vector 

x = (Pl, . . - 7 P,, x1, y1, . . . , x, ,  Yv) 7 (2 .4 )  

where I' is the number of vertices, and F the number of 'faces' or bubbles in the foam. 
The x and y are coordinates in an arbitrarily chosen frame of reference relative to 
which the foam as a whole is stationary. The p are the bubble pressures. 

Similarly, collect the set of areas and angles into a vector 

Y = (Al , .  .. ,A,,  O,, Gl,  ... , O,, @"). (2 .5 )  

Some convention must be introduced to select just two angles, 0, and at  vertex 
i .  The A denote the areas of the bubbles. We argued above that elementary plane 
geometry yields a functional relationship 

Y = 9 ( x ) .  (2 .6 )  

Consider now an infinitesimal, 'virtual' rearrangement of the foam wherein X 
changes by dX, and Y consequently changes by dY. The Jacobian, J, of the 
transformation from X to Y in (2.6) relates the two: 

a s  
ax d Y =  JdX;  J=-  

The calculation of the elements of J can be done analytically, since all the formulae 
summarized as (2 .6 )  are known. The Jacobian is an (F + 2V) x (F + 2 V )  matrix. For 
periodic boundary conditions V = 2F by Euler's polyhedral formula (cf. Aref & 
Herdtle 1990). Hence, J is a 5F x 5F matrix. However, it is very sparse. For example, 
for 100 bubbles, J has 500 x 500 entries. The last 400 rows will each have exactly 9 
non-zero entries, since each angle depends only on the coordinates of the vertex at 
its apex, the coordinates of the two vertices forming its legs, and the three pressures 
in the bubbles around its apex, making a total of 9. The first 100 rows will have 19 
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non-zero entries per row, on average, since each cell has 6 neighbours on average, and 
the area of a cell depends on its own pressure and the pressures in its neighbouring 
cells (7 numbers, on average), as well as on the coordinates of its vertices (12 
numbers, on average). Figure 2 shows the pattern of entries in J that are non-zero 
for a foam with 100 bubbles, and the numbering of vertices and bubbles that we 
actually used in the computations. This figure pertains to the initial state of the foam 
set by the Voronoi construction (53.3). The sharp, curved boundary, at  the top and 
side of figure 2, which reflects the numbering of vertices and bubbles, is gradually 
broken as reconnections in the foam take place. The reader is invited to verify the 
counting of 9 and 19 non-zero entries mentioned above. Although sparse, this 
diagram of non-zero elements of J shows that the foam is a many-body problem 
capable of sustaining long-range correlations. 

The Jacobian J is singular, since a rigid translation of the entire foam relative to 
the periodic box will have no effect on angles and areas. Hence, if d X  is chosen to 
correspond to such a translation, the corresponding vector d Y vanishes. The same is 
true if d X  corresponds to a uniform addition of pressure to all bubbles (unless there 
is some boundary condition on the pressure), since only pressure differences effect 
changes in the geometry. 

It appears (from numerical computations) that the null space of J is limited to 
those dX, such as rigid displacements or uniform pressure changes, that one expects 
on physical grounds. I n  particular, the null space is small. With the understanding 
that the null space is dealt with separately, we consider the formal inversion of (2.7), 

We may distinguish two types of processes (which become the possible 'steps' in the 
numerical implementation below) : (i) elastic relaxation, in which the areas of 
individual bubbles do not change, and the angles all adjust to 120"; and (ii) difluusion, 
in which the areas change according to von Neumann's law, (2.2), but the angles 
remain fixed. The evolution of the foam may be considered to be a succession of steps 
of type (ii), with steps of type (i) as useful tools for initialization (e.g. from a Voronoi 
construction, where the angles are not 120" ; see 53.3), as an occasional 'control', and, 
as we shall see below, as an essential ingredient following a topology change in the 
foam. 

The above considerations allow us, in principle, to evolve the foam due to 
diffusion. We shall comment on how this is actually done in the next section. Here 
we must address the important augmentation of the framework established so far 
that is required whenever a film in the foam approaches zero length. Figure 3 shows 
examples of how this can happen. Two basic processes are at  work. In  the T2 change 
a three-sided bubble contracts to a point. In the T1 change a single film contracts to 
zero length, and a reconnection takes place in which the two adjoining bubbles each 
lose a side, with two other neighbouring bubbles each gaining a side. Both these 
processes change the association of vertices, areas, and angles with bubbles that is 
implicit in (2.4), (2.5). Indeed, a T2 process eliminates one pressure and two vertices 
from X. 

The new topology and reassignment of vertices to bubbles is enforced whenever 
the simple evolution (2.8) produces a side of length zero. This type of singularity 
happens readily and frequently. It is a change in the topology of the system akin to 
the merging of two vortices in two-dimensional turbulence. Physically, the process 
of reconnection is rapid compared to diffusion. The evolution of the foam may be 
thought of as t.he slow diffusion of g,zs between bubbles interrupted suddenly and 
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FIQURE 2. Diagram showing the pattern of non-zero elements in the Jacobian, (2.7), for a foam with 
100 bubbles and the convention for numbering of vertices and bubbles that was actually used 
computationally. 

FIQURE 3. Stages in the evolution of a few-bubble foam illustrating the contraction to a point of 
a three-sided bubble (T2 change; (b) to (c)). Also shown is the reconnection (T1 change) due to the 
vanishing of a film separating a five-sided from a seven-sided bubble (d ,  e). The resulting four-sided 
bubble disappears ( e , f )  due to a T i  immediately followed by a T2. 
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intermittently by topology changes. The adjective ‘ punctuated’ has been used for 
dynamics of this kind. Elastic relaxation steps, type (i) above, are essential in 
bringing a newly reconnected configuration back to a state of mechanical equilibrium. 

3. Computer implementation 
The various steps and procedures described in the preceding section lead to several 

interesting numerical analysis problems when implementation in a computer code is 
considered. As we describe our solutions to these we shall frequently refer to the 
pioneering computational work aimed a t  solving the canonical model by Weaire & 
Kermode (1983a, b ;  1984). We shall ignore for the present the hexagonal lattice 
model pursued by Wejchert, Weaire & Kermode (1986), which, however promising, 
has yet to yield results of comparable resolution to  a continuous space approach, 
such as we use here. We also ignore phenomenological models, such as that of 
Beenakker (1988), since they do not represent discretizations of the full equations of 
the canonical model described in $2. The most comprehensive description of the prior 
methodology appears in Kermode & Weaire (1990, abbreviated as KW in what 

3.1. Differences with the computer code of Kermode & Weaire 
The first main difference between our code and KW is that in any time step we tackle 
the full system (2.7) or (2.8) at once, whereas KW partition i t  into a sequence of 
5 x 5 ,  uncoupled subsets involving the degrees of freedom dx, dy, dpl, dpz, dp,, where 
(dx, dy) are the changes in the coordinates of a vertex in the foam, and dpl, dpz, dp, 
are the pressure changes in the three bubbles sharing that vertex. I n  the method of 
KW : ‘Each iterative step consists of a change of the coordinates of one vertex and 
the pressures of the three neighbouring cells.. . Each vertex is treated in turn, and the 
entire cycle repeated (typically ten times) to achieve convergence. The local 
relaxation is designed to take the structure towards fulfilment of the equilibrium 
conditions for given cell areas.. . ’. Of course, iterating these submatrix calculations 
to convergence over the entire foam is, in principle, equivalent to solving the full 
system a t  once as we do (although it may be a less efficient way of solving a sparse 
matrix equation). However, reconnections within the foam during these iterations 
should not be allowed. 

The second main difference between our implementation and KW is that the 
entries in the matrix J are calculated analytically for our case, whereas in KW the 
corresponding derivatives in the 5 x 5 submatrix are computed numerically using one 
of ‘two methods supplied, namely the standard “ slope ” calculation and Richardson’s 
extrapolation.. , The choice of method used is defined by the user.. . ’ 

The third main difference with KW is in the criterion used for effecting a 
reconnection. With reference to figure 4 (a ) ,  where xi = (xi, yi), x5 = (xj, y5) are the 
present positions of two neighbouring vertices, and dx, is the change in position of 
vertex i, computed by the 5 x 5 subsystem described above, KW perform a T1 
change if 

follows). 

I X $ - X , I ~  < ( ~ , - ~ i ) . d x i .  (3.1) 

We re-emphasize that implementing a T1 change while the submatrix solutions are 
being iterated to produce a pure diffusion step can lead to spurious T1 changes. Only 
after all vertices have been adjusted in a diffusion step can the configuration be 
assessed for potential topology changes. We do not see (3.1) as a terribly convincing 
criterion in that context. 
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FIGURE 4. (a )  Subset of the foam that may lead to a T1 change if vertices i and j approach. ( b )  
Possible crossover that must be detected and addressed by the code. Note that the vertices, j, k, 
and 1,  that are neighbours of i, appear in counter-clockwise order in (a), but not in ( b ) .  

By contrast, after a successful diffusion step, our code checks explicitly for the 
distances to all neighbours of a given vertex, and if a distance falls below a preset cut- 
off (some small fraction of the box size), a T1 change is effected. After reconnection 
an elastic relaxation step is performed, and if further edges are found to fall below 
the cut-off, additional T l  changes are carried out. While this method may appear so 
straightforward as to be entirely trouble-free, there is one subtlety. It is possible that 
as the time evolution in (2.7)-(2.8) unfolds, two vertices would cross over as stylized 
in figure 4 (b) .  Thus, just checking the magnitude of distances between vertices does 
not suffice as a criterion. One must also detect crossovers. Naturally, if a crossover 
is detected, the step that led to it needs to be reduced so that it does not happen. 

To detect crossovers we decide at  the outset to keep the vertex connections to 
neighbours in a counter-clockwise order. The states before and after crossover will 
now differ in the order in which the neighbouring vertices to vertex i appear : jkl  in 
figure 4 (a ) ,  kjl in figure 4 (b) .  The different possibilities are distinguished by the signs 
of various vector cross-products for vertex separations. Hence, at each time step we 
compute not only the magnitudes of the vertex separations, but we also check that 
the appearance of neighbours is still in the correct, counter-clockwise order. 

Cell disappearances (T2 changes) are easier to deal with, since they pertain to an 
area approaching zero. From von Neumann’s law one can predict exactly the time 
when the next three-sided bubble will contract to zero area, and a step of this size can 
be taken. Our implementation of T2 changes appears to agree with that of KW. We 
may also comment that whereas KW only adjust time steps to anticipate T2 
changes, we adjust time steps to anticipate both T1 and T2 changes. This is discussed 
in more detail in the following subsection. 

It seems clear that the differences between our code and KW can lead to 
considerable deviations in the results for long-time evolution. Indeed, in $5 we 
discuss significant differences in the computation of the statistics of large foams 
relative to earlier work based on the code described in KW. We suspect that the 
treatment of when and how to initiate a T l  change is the major difference between 
our implementation of the canonical model and KW, and the main source of 
disagreement in the results. 

3.2. Additional computational considerations 
The problem of multiple reconnections at a given time arises. In a typical large 
evolving foam, started from an essentially random initial state, multiple simul- 
taneous reconnections are rare. However, for comparing the code to the results of 
Kraynik & Hansen (1 986), where all reconnections in the monodisperse-hexagonal 
foam occur at  once, it was essential to develop the capability of handling 
simultaneous reconnections. This is easier to do reliably in a formulation that 
includes the fully coupled system of equations. 
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Related to the issue of simultaneous reconnections is the physically relevant issue 
of topology changes that follow one another very closely in time. For a four-sided cell 
a T1 change will produce a threc-sided cell. Typically, this cell will immediately 
undergo a T2 change (unless a smaller three-sided cell appears elsewhere in the foam). 
One can therefore proceed directly to this change before performing the elastic 
relaxation step. 

The solution of (2.8) is the most time-consuming part of the calculations since i t  
involves solving a large linear system. It is essential to take advantage of the sparse 
nature of the matrix J. Addressing this issue has been one of the major improvements 
in technique since our initial report on foam simulations in Herdtle & Aref (1989) and 
Aref & Herdtle (1990). Using the least-squares solution routine in the software 
package SPARSPAK (George & Ng 1984) to solve (2.7) for dX we have been able to  
reduce the operation count to O ( L V . ~ )  per time step. I n  our earlier work we were using 
a full singular-value decomposition procedure, resulting in an operation count O(2V2.’) 
per time step. This was, however, useful in convincing us that  the only null-space 
vectors X are those that would be anticipated on physical grounds, such as rigid- 
body translations and uniform pressure changes (as allowed by the boundary 
conditions). The enhanced efficiency has been a key ingredient in allowing us to 
perform simulations of the size described in $5. Although these simulations are still 
quite time-consuming (as mentioned in $ l ) ,  the memory requirements are small, and 
we have been able to run a t  low priority, greatly reducing the actual cost of the 
calculations. A scalar version of the code has also been running on a Sun 
SPARCstation for extended periods during the past year. Cross-referencing of results 
from the two versions of the code running on different computers has been useful on 
several occasions. We show in figure 5 a plot of the computer time used in one of the 
large simulations discussed in $5  as a function of the number of bubbles in the foam. 
The gentle slope reflects the O(2V1.3) scaling. The intermittent ‘bursts’ are due to  
adjustments in step size, producing several small steps, to accurately hit the T1 
changes occurring in the foam, followed by the elastic relaxation. The increased 
computational work takes place a t  an essentially constant number of bubbles, 
resulting in the spikes seen in figure 5.  (The set of downward spikes in figure 5, much 
fewer in number, correspond to ‘easy’ bubble elimination steps, where a T2 change 
occurs a t  some vertex with no other changes in foam structure.) 

We have so far phrased the evolution of thc two-dimensional foam in terms of 
corresponding infinitesimal changes d X  and d Y, (2.7), (2.8), and, implicitly, 
correspondingly small steps so that the linearized equations relating these two vectors 
are accurate. However, from the point of view of computational efficiency there is a 
clear incentive to make the evolutionary steps as large as possible. Now, during a 
period where no topology changes take place in the foam, the evolution is really quite 
simple: the connectivity of films and adjacency of bubbles is fixed, and von 
Neumann’s law (2.2) dictates how much gas is to  be transferred into or out of 
individual bubbles based on their number of sides (and, in particular, not their 
shapes). Hence, an aggressive evolution strategy is to attempt steps that are as large 
as allowed by the smallest three-sided bubble in the system. Intervening T1 changes 
will, of course, cut down this step. If the large step is possible, however, the new areas 
are computed, and an elastic relaxation step is performed to find the new structure. 
Since the set of areas and angles completely determine the foam structure, use of the 
linearized approximation (2.7) or (2.8) in determining new positions of the vertices 
can lead, at worst, to a rigid displacement of the entire foam. 

The difficulty in taking large steps is to anticipate any T1 changes so that the code 
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FIGURE 5. Plot of CPU time used (in s) from one bubble disappearance to the next as a function 
of the number of bubbles. The general decrease due to the W 3  scaling is clearly visible as are the 
intermittent bursts due to T1 and T2 changes followed by elastic relaxation. 

does not overshoot them. (The time for T2 changes can be predicted quite 
accurately.) We have found that the linear system (2.7) is a useful predictor of when 
T1 changes will occur, even though it provides only an approximation to the true 
displacement of vertices for large steps. That is, if a vector d Y  is constructed from 
von Neumann’s law (area changes proportional to time, angle changes zero), and the 
corresponding vector dX is computed from (2.8), then X+dX can be examined for 
T1 changes (check vertex separations against cut-off, and check for crossovers), and 
this is a reliable indicator of whether these occur. Since dX is proportional to time, 
simple proportionality allows an estimate of when the T1 change will occur, and a 
large step can be taken (up to some margin of safety). This will reduce the time to 
the T1 change, and the procedure can be iterated. These acceleration techniques 
reduce the computer time considerably. 

We should stress that the discussion of time steps just given breaks down, in 
general, when rigid boundaries are present, because the angle 8 in the generalized von 
Neumann’s law (2.3), which will be non-zero except for simple geometries with flat 
boundaries, injects a dependence on the shape of individual bubbles into the diffusion 
step. Then we have no choice but to continually take small time steps within the 
confines of the linear approximation (2.7). 

As in previous work we do not allow two-sided cells since they would always be 
unstable. It is believed that the foam could reduce its overall energy if such a cell 
were to slide to a nearby vertex and become three-sided (Weaire & Kermode 1983b). 
However, a rigorous proof of this appears to be lacking. More appropriate to the 
simulations is the observation that it would also be impossible to create a two-sided 
cell during the evolution of the foam. Such a cell could only be created by a T1 change 
on a three-sided cell, but there is no mechanism to move this hypothetical cell away 
from the vertex after the T1 change. Thus two-sided cells could only be introduced 
through the initial conditions, and would quickly disappear by von Neumann’s law. 

Regarding units, we use the ratio of an area (either the initial, average area per 
bubble, or the total area of some portion of the foam ; the actual choice is specified 
later as the issue arises) to the coefficient, $ 7 ~  KU, in von Neumann’s law as our unit 
of time. As a unit of length (if needed) we can use the average film length in the foam, 
or a linear dimension of the domain in question. The average pressure difference, 



244 T .  HertEtle and H .  Aref 

( A p ) ,  scaled by u is a dynamically defined inverse length, that diverges for a 
polydisperse-hexagonal foam. This discussion of scaling becomes much more 
interesting for a foam with a compressible gas in the bubbles, a topic that we shall 
treat elsewhere. 

After performing a number of calculations using periodic boundary conditions we 
decided to produce a video of some of the results. Upon doing this we discovered that 
the entire foam would shift in an apparently random fashion following a T1 change. 
The reason for this is that such shifts are null vectors of the Jacobian (2.7), and thus 
are added in by the SPARSPAK solver. Although such shifts of the foam relative to the 
periodic boundaries in no way affect the structure, evolution, or statistics of the 
foam, they are distracting in a video or other continuous graphics. 

The physically correct solution to this problem is to keep track of the centre of 
mass of the foam, and not to allow it to move (since no external force acts on the 
foam). Although the total area of foam in a doubly periodic box remains unchanged 
during the evolution, there can be an area flux across the edges. The program needs 
to keep track of this flux in order to properly track the centre of mass, which must 
remain fixed during the evolution. When this, somewhat tedious, check was 
implemented, the shifts disappeared as expected. Analogous remarks pertain to 
angular shifts for a foam in a circular container. 

3.3. Remarks on initial conditions 

The problem of initial states has been considered in the earlier work cited and we may 
confine our remarks to just a few points. A system with only hexagonal cells is in 
equilibrium with regard to diffusion, according to von Neumann’s law, but it makes 
an interesting initial condition for deformations, especially in the polydisperse case, 
when the cells are allowed to have many different areas. This configuration is also 
useful for diffusion studies, if one creates a few imperfections in an otherwise 
hexagonal lattice. This can be done by forcing some T1 changes in the hexagonal 
foam, by ‘popping’ some sides, or by splitting some cells. 

The most useful initial condition for statistical foam studies is the Voronoi 
construction or Dirichlet tiling (cf. Grunbaum & Shephard 1987), because it 
automatically creates a controllable a.mount of disorder. I n  the simplest case these 
cells form a tiling of the plane produced from a number of point ‘seeds’ that are 
scattered over the region in question. The cells arise by associating with each seed the 
set in the plane consisting of points that  are closer to i t  than to any other seed. Each 
vertex in such a tiling is tri-valent (except for degeneracies due to symmetry). This 
is probably the most important property with respect to the two-dimensional foam 
problem. The angles in the Voronoi pattern are, of course, not in general 120”’ but 
we can achieve such angles by allowing the Voronoi tiling to relax elastically. 

It is possible to vary the kind of tiling that one obtains by imposing constraints on 
the distribution of initial seeds. A commonly used device is to impose a ‘hard core’ 
on the seeds by requiring any two to be a specified minimum distance apart (see Weaire 
& Rivier 1984). Voronoi patterns with a hard core tend to  have lower values ofp2 
than patterns with no constraint. I n  some cases i t  became necessary to create even 
more regular networks, that could st.ill be considered random. Since the Voronoi 
construction with the hard-core modification cannot create networks with puz less 
than about 0.5, we followed Weaire & Lei (1991), and ran the foam ‘backwards’ for 
a while (effectively using von Neumann’s law with negative K ,  but without T2 
changes). This could produce values of p2 as low as 0 . 2 0 . 2 5 .  

Another initial condition that we used, for reasons to be described in $5, 
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FIGURE 6. Comparison plot with the work of Kraynik & Hansen (1986). Details of the panel by 
panel comparison are given in the text. 

suppressed the number of hexagons. This was accomplished by repeatedly forcing T i  
changes for edges between two hexagons, even if they were not particularly short, 
eliminating two hexagons each time. Clearly not all hexagons will be eliminated by 
this method, since four cells are affected by every T1 change, and new hexagons may 
be created as one tries to eliminate others. The method was nevertheless successful 
in decreasing the initial number of hexagons significantly. 

A final useful addition to the roster of initial conditions, suggested to us by A. 
Kraynik, is to make the foam isotropic, i.e. stress-free. Clearly, regular hexagonal 
foams are stress-free, but finite, Voronoi-initialized foams, in general, are not (an 
infinite system would be). The stress in a general initial condition formed from the 
Voronoi construction may affect the long-time statistics of the foam. To eliminate it, 
the periodic box containing the foam is simply deformed by an affine transformation, 
and since the equations are nonlinear, this process can be iterated until the stress-free 
state is obtained to high accuracy. 
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FIGURE 7. Relaxation of a ‘fractal foam’ decorating a vertex in a system of three larger bubbles 
in a circle. The case w = + with 5 levels (in the terminology of Herdtle & Aref 1991 a) is shown. The 
times corresponding t o  the configuration changes in the various panels are known analytically, and 
were reproduced by the code to machine precision. 

4. Code verification 
The first results that we report are designed to verify that the code described in 3 

is performing properly. We have explored two principal test cases, which seem to 
complement one another nicely, and suggest that the code is indeed producing 
reliable results. The first of these concerns the purely elastic behaviour of a 
monodisperse-hexagonal foam under shear and extensional deformations investi- 
gated by Kraynik & Hansen (1986). For these cases there is no diffusion. Our 
second test follows the diffusional relaxation of any of a family of ‘fractal foams ’. We 
have solved these cases analytically (Herdtle & Aref 1991 a) and established formulae 
for the precise times a t  which different levels in the fractal hierarchy disappear. 
Several such cases have then been computed using our code, and the times a t  which 
reconnections occurred have been recorded. Excellent agreement was obtained in all 
cases. 

Figure 6 shows one result from the simulations aimed a t  reproducing the results of 
Kraynik & Hansen (1986). The monodisperse-hexagonal foam is being subjected to 
an elastic shear deformation. The eight panels in figure 6 ( a )  trace the deformations 
of individual cells in the foam, and should be compared to figure 7 of Kraynik & 
Hansen (1986). Figures 6 ( b )  and 6 ( c )  trace the variation of shear stress and normal 
stress difference with strain and should be compared to figure 6 of Kraynik & Hansen 
(1986). (We have chosen to connect the curve across the discontinuous jumps 
corresponding to T1 changes.) Most of the other cases studied by Kraynik & Hansen 
(1986) were simulated also, and in all cases very good agreement was obtained. The 
actual times for the reconnections to occur, as well as all the variations in the stress 
tensor matched the analytical solutions extremely well. 

The fractal foam check has already been mentioned in an earlier paper (Herdtle & 
Aref 1991a). An example is shown in figure 7. We are considering a foam situated 
within a rigid circular boundary. One of the vertices has been ‘decorated ’ by a fractal 
foam structure. This is characterized by the area ratio, w, between successive levels 
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in the hierarchy. As shown in Herdtle & Aref (1991 a )  the entire evolutionary process 
can be calculated in terms of w. In a fractal foam with m levels, the time at which 
bubbles of level j = 1, 2, . . . , m - 2, m - 1 disappear is given by 

t5 = i d 4 ( 1 - 2 W ) .  (4.1) 

(The unit of time here is the area of the fractal foam region divided by the coefficient 
in von Neumann’s law ; cf. Herdtle &, Aref 1991 a.)  The collapse time for the smallest 
triangular bubbles, level m, is 

tm = +m-1. (4.2) 

We used this analytical solution to check the code for w = i, i, and i, and up to 6 
levels in the fractal hierarchy, and with w = i ,  and up to 4 levels. (Theoretically 
0 < w < 2. For large w there is a limit to how many levels we can initialize, since the 
smallest bubbles approach so closely upon elastic relaxation that a T1 change takes 
place.) Figure 7 illustrates the case w = a with 5 initial levels. Both the time for the 
entire decoration to disappear and all the intermediate times, when different levels 
in the hierarchy disappear, were found by the code essentially to machine precision. 

Two comments may be made. The first is that the collapse of the fractal decoration 
does not depend on the boundary conditions on bubbles that are not part of the 
fractal foam itself. This is clear from the analysis, and is here verified numerically. 
The examples quoted in Herdtle & Aref (1991 a )  used periodic boundary conditions. 
The second comment is that these solutions give us an explicit instance of an N us. 
t decay law. Although the bubbles disappear in groups at  definite times, it may be 
useful to consider what power law (if any) describes the disappearance of the various 
generations of bubbles in a fractal foam with many levels. The number of bubbles 
present just before time t = t5 is N5 x 3312. Hence, from t5 % td we deduce 

log 3 
log w a 

a = -- (4.3) 

This varies from a = 1.0 at the theoretical limit w = $ to arbitrarily small values of 
a as w + 0 (and corresponds to the virtual origin in time, to in (5.1) below, being equal 
to 0). 

5. Statistical dynamics of large two-dimensional foams 
We have conducted a number of numerical experiments on the relaxation of large 

two-dimensional foams using the code described in the preceding sections. The 
largest systems that we have explored start with 1024 bubbles, initialized according 
to one of the recipes described in $3.3. Figure 8 shows six stages in the evolution of 
such a foam. The panels are drawn for 1024 bubbles (initial condition), 900, 700, 500, 
300 and 100. For this particular run (Run I1 in table 1 )  the initial state was 
constructed using the Voronoi procedure with a very mild hard-core constraint. The 
initial value of p2 was relatively large, equal to 1.49. As mentioned, the CPU time 
required to follow this foam from its start with 1024 bubbles to a final, polydisperse, 
hexagonal foam, with just a few bubbles within the periodic box is large, and, 
consequently, the number of different runs that we have performed is rather limited. 
We collect the ones that we will discuss here in table 1. 

The most immediate statistic to monitor is the number of cells, N ,  as a function of 
time. Cells are continually disappearing from the foam due to T2 changes. The 
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FIQURE 8. Stages in the relaxation of a two-dimensional foam started from 1024 bubbles. Panels 
are shown for N = 1024 bubbles (initial condition, after elastic relaxation), 900, 700, 500, 300 and 
100. This is Run 11 in table 1. 

Run 

I 
I1 

I11 
IV 
V 

VI 
VII 

VIII 
IX 
X 

XI 

Initialization 

Voronoi, no core constraint 
Voronoi, very small hard-core constraint 
Voronoi, small hard-core constraint 
Voronoi, larger hard-core constraint 
Voronoi, no core constraint, hexagons suppressed 
Voronoi, no core constraint, circular boundary 
Voronoi, no core constraint, stress-free initially 
Voronoi, hard-core constraint, backwards diffusion 
Voronoi, hard-core constraint, backwards diffusion 
Polydisperse hexagonal, line of imperfections 
Polydisperse hexagonal, scattered imperfections 

Initial 
bubbles Initial ,ul 

1024 
1024 
1024 
1024 
1024 
1024 
1024 
512 
512 
480 
480 

1.72 
1.49 
1.17 
0.72 
1.84 
1.53 
1.76 
0.35 
0.19 
0.10 
0.06 

TABLE 1. Summary of numerical experiments on large foams 

analogy with a two-dimensional turbulent flow may be helpful. If we consider the 
distribution of bubbles in area and number of sides, the diffusion of gas between 
bubbles and the T1 changes lead to a ‘dual cascade’, where bubbles with more than 
six sides grow, and bubbles with less than six sides contract. Removal from the 
system occurs for bubbles of three sides, and these bubbles are typically the smallest 
in size. At the other end of the spectrum, the largest bubbles eventually feel the 
boundaries of the containing box. The energy of the system resides in the elastic 
energy of the soap films, and is crudely proportional to N .  Thus, we may expect that 
N will display a power-law dependence on time. 
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FIGURE 9. Power-law fit, equation (5.1), to the number of bubbles in figure 8 as a function of 
time (table 1, Run 11) for N = 1024 to 100 bubbles. 

5.1. Results indicative of a scaling regime 

We found that a three-parameter fit, 

N = N~ (1 + t7, (5.1) 

where No, to and a are all to be determined in a least-squares sense using log N and 
log (1 + t / t o )  as variables, gave very satisfactory representations of the data. An 
example, from Run 11, is shown in figure 9. (We have plotted logN versus 
log (1 + t / t o ) ,  although the labels on the abscissa refer to values of t itself.) Equation 
(5.1) incorporates the idea of a ‘virtual origin’ in time, when the foam was infinite. 
In figure 9 (and again in figure 12) the unit of time is taken as the average area per 
bubble in the initial state divided by the coefficient in von Neumann’s law. 

Fits to the data of quality similar to that in figure 9 have been found for Runs 
1-111 and VII. Very consistent values of the parameters No and to were found, and 
values of a in the range 1.13-1.21 were obtained. These are about twice as large as 
those reported in the experimental literature (Glazier et al. 1987). The virtual origin 
is very important. If one simply measures the slope of a log N vs. log t plot a t  some 
intermediate value of N, say N = 500, a slope as shallow as -0.5 may be obtained 
(leading to a much smaller estimate for a). On the other hand, we have also tried to 
concentrate our fit on the ‘scaling regime’, by considering a window, 800 2 N 2 300, 
of the data. Here considerable variability of a can result from the choice of window. 
Stavans (1990) reports a x 1 .O. 

The other quantity that has been the subject of considerable attention is ,uz. Both 
laboratory experiments (Stavans & Glazier 1989) and computations (Weaire & Lei 
1990) suggest the existence of a similarity range with ,u2 x 1.4. In the laboratory 
experiments of Stavans & Glazier (1989) two foams, one with air in the bubbles, the 
other with helium, were followed down to about 100 bubbles. The air foam started 
with 5000 bubbles, the helium foam with 10000. In the computations of Weaire & Lei 
(1990) foams of up to 500 bubbles were followed. 
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FIGURE 10. Plots of ,u2 as a function of N for Runs I-IV in table 1 .  
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FIQIJRE 11. (a) The number-of-sides distribution, p(n) ,  for Run I1 for 800 3 N 3 200. The range of 
variability in p(n) is indicated by error bars (standard deviation). ( b )  Comparison of the p(n)  
curve for Runs I-IV showing the degree of scaling. 

In  figure 10 we plot the history of ,uz for Runs I-IV from table 1.  We find i t  more 
satisfactory to plot ,uz as a function of N rather than time, since the physical time 
depends on additional factors such as the permeability of the soap films to diffusion 
of gas. Many more data points are available to us than to the experimenters, since 
we have the entire foam in digital form at each instant. We note the appearance of 
a plateau in these curves, after a relatively long, initial transient, with considerable 
fluctuations. Consistent with the earlier work we do find that a similar plateau is 
reached regardless of whether the initial ,uz is higher or lower than the value a t  the 
plateau. However, our ‘scaling value’ of ,uz is somewhat lower than that reported 
previously. We find the plateau in ,u2 to occur at 1.2, approximately. 

The levelling off of ,uz suggests that the distribution of the number of sides, p(n) ,  
is assuming a similarity form. There are two checks to  be performed regarding this. 
On one hand, we want to  inquire whether p(n)  for a given run is assuming a fixed form 
over some range of N ,  If this is true, we want to compare the similarity forms of p(n)  
for different runs. Both questions are addressed in figure 11. In figure 11 (a)  we show 
p(n) for Run 11. Using values from N = 800-200, the curve connects average values, 
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and the error bars indicate the standard deviation. Similar scaling is obtained from 
Runs I, I11 and IV. I n  figure 11 ( b )  we have superimposed the average p ( n )  for Runs 
I-IV, again using data from N = 80&200 bubbles, showing the level of scaling 
between runs. Clearly, a strong case for a similarity form of p ( n )  emerges in this 
diagram. 

It is particularly noteworthy that our similarity form for p ( n )  has p(6)  > p(5) .  This 
is as one would expect, since hexagonal cells are in local equilibrium in the diffusive 
dynamics of von Neumann’s law. However, the similarity form given by Stavans & 
Glazier (1989), albeit obtained only for a few hundred bubbles, clearly has 
p(5) > p(6) .  This difference is also consistent with the higher scaling value of p2 
reported by these authors. Weaire & Lei (1990) do not show a scaling form for p ( n ) .  

We have counted the number of cells that are hexagons with three or more 
hexagons as neighbours. Normalized by the total number of cells, this proportional 
measure of ‘order’ is found to  converge during the scaling state to a value of 
0.15+0.03 (averaged over Runs I-IV). 

We have also monitored the ratio of T1 and T2 changes, and found it to asymptote 
to  3 :2. A rough understanding of this may be obtained as follows. Consider some of 
the more common combinations of neighbouring cells, such as a quadrilateral and a 
hexagon, or two pentagons. In the former case a T1 change can produce a three-sided 
and a five-sided cell. The first of these disappears in a T2 change. The second 
undergoes two T1 changes and a T2 before i t  disappears. I n  total, three T1 and two 
T2 changes are required as this pair disappears from the foam. This is precisely the 
3:2 ratio observed. Similarly, the two pentagons require three T1 changes to 
produce, sequentially, two four-sided and then two three-sided cells, which vanish in 
two T2 changes. Again a ratio of 3 : 2 emerges. This is not always the case. For 
example, a pentagon and a hexagon require four T1 and two T2 changes to 
disappear, and a pentagon and a quadrilateral require two T1 and two T2. Taken 
together these processes, thus, require six T1 and four T2 changes, again yielding the 
ratio 3 : 2. 

An interesting question is whether a disordered system of cells has an elastic 
energy (proportional to the total length of soap films) that is higher or lower than an 
equivalent system of hexagons with the same total area and number of cells (A. 
Kraynik, personal communication). The value of the energy for the equivalent 
system of hexagons is Ehex = (22/3NAt,,);. It is well known that the energy of a 
polydisperse-hexagonal system does not change when the sizes of the cells are 
changed in such a manner that the total area remains constant. It is possible to come 
up with examples of disordered foams where the energy is higher than Ehex (make one 
T1 change in a regular hexagonal foam ; one finds numerically that the energy can 
increase with fixed N ) ,  and examples where it is lower than Ehex (add small 
three-sided cells a t  the vertices of the hexagonal foam; N can be increased 
arbitrarily a t  essentially no increase in total film length). These possibilities led us 
monitor the ratio of energy of our evolving, disordered foam to Ehex. An elastically 
relaxed foam started from unconstrained Voronoi polygons has a value of the scaled 
energy, E/Ehex, in the range 0.95-0.99, whereas a foam generated by using the hard- 
core Voronoi initialization has a higher value of EIE,,, in the range 0.99-1.05. 

The remarkable - and somewhat surprising - conclusion from our simulations is 
that in the scaling regime, foams seem to assume a constant value of E/Ehe, = 
0.945+0.010. Thus, the energy of the evolving, disordered foam is always slightly 
less than that of the corresponding hexagonal foam. It is tempting to conjecture that 
a similar result would hold in three dimensions for the energy of an evolving foam 
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FIGURE 12. The number of cells versus time (the unit of which is total area of the foam scaled by 
the coefficient in von Neumann’s law) for Run IV (‘top ’ curve) showing the ‘waves ’ of T2 changes. 
For comparison N versus t is also plotted for Runs 1-111. (Run I1 is the case fitted to a power law 
in figure 9.) 

relative to the energy of an equivalent system of Kelvin tetrakaidecahedra. We do 
not understand the dynamic origin of this result, but it is reminiscent of notions of 
‘ marginal stability ’ or ‘ self-organized criticality ’ that have been advanced for the 
evolution of similar statistical systems. 

5.2. Challenges to scaling 
So far, we have concentrated on those results of our simulations that appear to  verify 
the notion of a scaling regime, albeit with governing statistical quantities that are 
quite different from what has been reported previously in the literature. We now turn 
to issues that indicate exceptions to the scaling picture, or - maybe more accurately 
- the limitations to  observing scaling behaviour inherent in working with systems as 
small as 1000 bubbles. After performing a few simulations it is readily apparent that 
obtaining a scaling regime is extremely sensitive to specifics of the initial condition, 
and the time to  reach the scaling state can vary widely from run to  run. 

When the larger hard-core constraint is applied to the Voronoi initial condition, an 
interesting phenomenon occurred that was not seen in the unconstrained Voronoi 
cases. Initially very few T2 changes occur in the system. Then, suddenly, many occur 
almost simultaneously. Then again there is a period where few occur; then again 
many. After a couple of these ‘ waves ’ no more are really discernible. Figure 12 shows 
a plot of N versus t for Run IV (the ‘top’ curve of the set), and, for comparison, the 
N versus t plot for Runs 1-111. (Run I1 was fitted to the power law, (5.1), in figure 
9;  the scaling of the time in figure 12 is the same as used in figure 9.) The reason for 
these waves is that in the hard-core Voronoi initial condition most of the bubble 
areas are nearly equal, and there are very few three- or four-sided cells. As the 
diffusion starts, all the five-sided cells have their areas reduced at the same rate (by 
von Neumann’s law). Then, as they become small, Ti  and T2 changes occur, and 
many cells disappear at nearly the same time. The same process then repeats itself 
with a new set of five-sided cells. The number of waves visible in theNvs. t plot (figure 
12) clearly depends on the initial area distribution. Typically, after two or three 
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FIQURE 13. Stages in the relaxation of a more ‘ordered’ two-dimensional foam. Panels are shown 
for N = 1024 bubbles (initial condition), 900, 700, 500, 300 and 100. This is Run IV in table 1.  This 
illustration should be compared to figure 8. While there are qualitative differences between the two 
runs in the first three panels, the last three appear statistically similar. 

waves the area distribution has become broad enough for this phenomenon to end. 
Also, clearly, a power-law fit for N ws. t ,  as in (5.1), will not succeed very well. 
Additionally, this ‘ringing ’ will appear in some other statistics, although neither the 
p2 ws. N scaling (figure 10) nor the scaling of p(n)  (figure 11)  are particularly affected. 
Figure 13 shows stages in the evolution of the initially ‘ordered’ foam, Run IV, for 
comparison with figure 8. 

The earlier laboratory and computational work showed one interesting effect 
associated with initial conditions. This is the apparently steep rise in p2 with time 
when the initial condition is highly ordered. To explore this phenomenon we 
initialized smaller systems (512 bubbles; Runs VII I  and IX in table 1) with low 
initial p2. This configuration was created by running a hard-core Voronoi foam (with 
p2 z 0.5) backwards for some time (see §3.3), a procedure that could reduce p2 to 
about 0.2 due to T i  changes. After the T1 changes have occurred, the foam is no 
longer reversible; thus, when it is run forward in time again, the network does not 
just backtrack the construction of the initial condition. 

We expected that the low initial value would always cause an overshoot of p2 
before it relaxed to its scaling value, as observed by Weaire & Lei (1990) and, 
particularly, by Stavans & Glazier (1989). Indeed, as the initial p2 -+ 0, a singularity 
must exist in the system, since for p2 = 0 we have a polydisperse-hexagonal foam, 
which will not evolve at  all under diffusion. When plotted versus N ,  we found initial 
transients for p2 that were far less dramatic than plots of p2 vs. t in the earlier work 
would suggest. Moreover, we found that p2 can either have an overshoot, OF it can go 
smoothly to the plateau value without overshoot. Interestingly, the run with the 
smaller initial p2 (Run IX) showed an essentially monotonic approach to an 
asymptotic value. 

For a polydisperse-hexagonal foam p2, of course, vanishes. Very small values of pz 
can thus be obtained by effecting a few T1 changes in such a foam, and using the 
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FIGURE 14. Evolution of an initially polydisperse-hexagonal foam with a line of‘ imperfections’ due 
to  T1 changes (Run X). Panels shown are for iV= 480, 450, 350, 250, 150 and 45 bubbles. Bubbles 
are shaded according to their number of sides, as indicated by the bar at the right. 

resulting, elastically relaxed state as the initial condition. Runs X and XI were of 
this kind. I n  Run X I  we had a few scattered ‘imperfections’ (the T1 changes will 
produce pairs of five-sided and sevcn-sided cells). In  Run X a line of such 
imperfections was initialized, resembling the ‘grain boundaries ’ seen experimentally 
in bubble rafts of essentially identical, hexagonal cells (Glazier et al. 1987; the 
classical bubble raft experiments of Bragg & Nyc (1947) contain much more fluid, 
and the dry foam limit is not applicable). Figure 14 shows stages in the evolution of 
Run X. The gradual widening of the ‘grain boundary’ is very similar to what is 
observed experimentally. For this run ,u2 did, indeed, grow to very large values. I n  
the final panel of figure 14, ,uz has reached its maximum of 3.24. 

The observation of long-lived transients and the apparent influence of initial 
conditions raises the question of whether the predominance of hexagons in the 
scaling regime discussed is anything but a remnant from the initial condition, where 
hexagons typically are the most numerous type of cell. In order to address this 
question we conducted a simulation (Run V in table 1) where the number of hexagons 
in the initial state was considerably reduced (cf. 53.3). In the initial states used for 
Runs I-IV, p(6) x 0.3-0.5 and p(6)/p(5) x 1.1-1.8. In Run V we had p(6) x 0.15, and 
p(6)/p(5) x 0.36. Nevertheless, as the foam evolved, a p ( n )  distribution was 
eventually reached, a t  N x 500, which is close to  the scaling form of figure 11, and 
definitely has p(6) > p(5). The scaling value of p ( 6 ) ,  figure l l ( b ) ,  is 0.35, 
approximately, and for this scaling distribution p(6)/p(5) % 1.2. 

A related concern is the influence of stresses along the boundaries of the periodic 
box. I n  separate calculations with a smaller number of cells we found that a sheared 
foam (without diffusion) would rearrange to produce a p(n) distribution that was 
strongly peaked a t  n = 6 and very symmetric about its peak (i.e. p(6-k) x p ( 6 + E )  
for k = 1, 2, 3, and insignificant numbers of cells with 10 sides or more). The small 
boundary stress in the simulations reported so far thus might be biasing the p ( n )  
distribution. This would not remove the inconsistencies with earlier work, since in 
the computations of Weaire & Lei (1990) no attempt was made to remove stresses 
either. 
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FIGURE 15. Evolution of a large foam in a circular boundary, Run VI. Panels shown are for 
il’ = 1024 (init,ial condition), 900, 725, 550, 375 and 200 bubbles. 

We have performed one large run with initially stress-free boundaries (see $3.3) 
and standard Voronoi initialization (Run VII). Fortunately, the results from this run 
are indistinguishable from those of Runs I-IV. 

In a similar vein, but aimed primarily a t  the possible effects of lateral boundaries 
in laboratory experiments, we performed a large run for a foam contained within a 
circular boundary (Run VI).  For this the Voronoi construction had to  be 
reformulated to accommodate the boundary. Statistics, taken over internal cells 
only, again show no appreciable deviation from the results reported for Runs I-IV. 
Stages from this calculation are shown in figure 15. Along the boundary we see a 
preponderance of five-sided cells, but it appears that within very few cell layers the 
presence of the rigid boundary ‘heals’, and we return to a state that  is statistically 
indistinguishable from the doubly periodic foam. 

5.3. Additional statistical rneamwes 

Ever since Lewis (1928) noted that the areas of cells on the skin of a cucumber were 
on average proportional to their number of sides, 

( A , )  = 4n-n,), (5.2) 
this same law has been sought in other cellular systems, such as foams and metal 
grains. It is found to  hold in many instances. However, there are frequently 
deviations for few- and many-sided cells (but the statistics on such cells is also 
usually poor, since there tend to  be few of them). 

Another, similar law claims that the average perimeter of a cell is proportional to  its 
number of sides: 

This is frequently mentioned in connection with metal grains. The literature seems 
to discuss both laws in relation to foam networks, and i t  is not clear which should 
really apply. One can attempt to argue the perimeter law, (5.3), on the basis of 
equipartition of energy, proportional to film length, between the films of the foam. 

(P,) = A(n-n, ) .  (5.3) 
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FIGURE 16. Check of Lewis' law, (5.2) left column, and the perimeter law, (5.3), right column, for 
Run I1 with N = 800 and 500. The polygon line connects averages for each n = 3, .  . . , lo,  the error 
bars show the standard deviation. The straight solid line is a least-squares fit. The scaling of the 
ordinates is described in the text. 

Then an n-sided bubble should, indeed, have n 'units' of energy, or film length. 
However, such a requirement is much stronger than the scaling being claimed, since 
it implies that all side lengths should be roughly equal, and this does not appear to 
be the case. Rivier has argued that Lewis' law plays the role of an 'equation of state' 
in a statistical mechanics treatment of a cellular aggregate (see his review, Rivier 
1990, where many further references may be found). 

In the present simulations we have checked both laws. Figure 16 shows data from 
Run I1 at N = 800 and N = 500 for each. Both Lewis' law and the perimeter law have 
been tested. The polygon line in each panel of figure 16 connects averages for each 
n = 3, .  . . , l o ,  and the error bars indicate the standard deviation. The areas plotted 
along the ordinate in figure 16 have been scaled by the average area per bubble, i.e. 
by the total foam area divided by N .  The perimeters have been scaled by the ' average 
perimeter', i.e. by twice the total edge length divided by N .  From such data a 
straight line fit can be obtained using the method of least squares, and from this one 
gets the slopes, h and A ,  and the intercepts, nA and np, in (5.2) and (5.3). For our 
simulations the perimeter law (5.3) provides a slightly better fit than Lewis' law (5.2), 
particularly for bubbles with a small number of sides. 

In figure 17(a, 6 )  we show the time evolution of the slope A and the intercept np 
as the foam evolves for runs 1-111. During periods of evolution where there are no 
reconnections the slope should increase linearly with time, and the intercept decrease 
inversely with time. However, the frequent reconnections that occur in the evolving 
foam lead to near constancy of both A and np as shown in figure 17 over an extended 



Numerical experiments on two-dimensional foam 257 

0.4 

I I 1 1 I 

1024 900 800 700 600 500 400 300 200 100 
N 

FIGURE 17. Variation with N of (a) the coefficient A ,  and (a) intercept np, 
in the perimeter law, (5.2). 

range of N ,  which overlaps the scaling regime discussed previously. Rivier (1990) 
presents theoretical arguments in favour of this behaviour. In the scaling regime the 
slope, A, settles down to 0.3, approximately. The intercept grows from a rather small 
value initially to about 2.5. These results appear to be new, and give the parameters 
in the perimeter law (and in Lewis’ law) an interesting dynamical significance. 

Similar remarks apply to the so-called Aboav-Weaire law (Aboav 1970, 1980; 
Weaire 1974), which states that the average number of sides of cells that are 
neighbours to n-sided cells, v,, should vary as 

v, = a + &n-l (5.4) 
(cf. Aref & Herdtle 1990). At any instant during foam evolution this law is followed 
quite closely. It is again interesting to view (5.4) from a dynamical point of view, and 
track the variation of the coefficient a with time by fitting the form (5.4) to the data 
from the simulation at each instant. (The coefficient t3 is given in terms of a and p Z ;  
see Aref & Herdtle 1990.) Fluctuations of about 10% in a are found, with a mean 
value of 4.8, approximately. There is, however, no indication of a more constant 
value of a within the scaling regime itself, as there is for other statistical quantities. 
Thus, verification of the Weaire-Aboav law did not appear as a good diagnostic of 
scaling behaviour. 

6. Discussion, conclusions and extensions 
The most significant result of the simulations reported here is that the properties 

of the scaling regime in a two-dimensional dry foam, as it coarsens due to gaseous 
diffusion, appear to depend on long-range couplings within the foam. These are 
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captured by the present computer code, but may not have been well represented in 
earlier simulation work. The long-range impact of T1 changes in the foam becomes 
vividly obvious when the simulations are turned into a video animation. Then one 
SCCS, unequivocally, that T1 reconnections have a finite range effect that extends 
over several layers of neighbouring bubbles. When a T1 change occurs, a shifting of 
bubbles scvcral ‘sites’ away is clearly evident. 

The differences between the laboratory experiments of Glazier et al. (1987) and the 
present simulations can have any of several explanations. The experiments are 
conducted with a finite amount of fluid trapped within the films of the foam. Hence, 
as the foam coarsens, more and more fluid must accumulate in Plateau borders. 
Further, there are effects due to drainage onto, and wetting of, the parallel plates 
confining the foam. Finally, as the films thicken, the dynamics of surfactants on the 
films will change, leading to possible changes in both surface tension and the rate of 
gaseous diffusion through soap films. Any one of these effects could make the 
experimental and the simulation results deviate from one another. It is possible that 
the recently proposed use of Langmuir monolayers to study two-dimensional foam 
dynamics (cf. Knobler 1990; Berge, Simon & Libchaber 1990; Lucassen, Akamatsu 
& Rondelez 1991), and techniques such as the one applied by Stavans (1990) to  
remove fluid from the films during the coarsening, can go some way towards bringing 
simulations and experiments into closer agreement. 

The approach of adding Plateau borders to the analytic f computational model is 
also very worthwhile, but much work remains to be done. The fluid in the entire 
system of films can be viewed as one multiply-connected ‘bubble ’ of a second phase. 
A single pressure is associated with this ‘bubble ’. It has a very large number of sides, 
all of which are circular arcs, if we ignore flow of liquid within the films. The 
Young-Laplace law then applies to determine the radii of these circular arcs as 
before. The main problem is the generalization of von Neumann’s law, which assumes 
a uniform rate of gas transport across the film. This is unlikely to be true if there are 
substantial variations in the thicknesses of individual films. In the limit of a small 
but finite liquid content, the liquid may be assumed localized at the vertices of the 
dry foam ‘skeleton ’ of the structure. These pockets of liquid are the Plateau borders. 
Three circular arcs delimit each one, meeting two and two in cusps. In this case we 
would add to our vector X in (2.4) a single pressure for the fluid component, and, in 
place of the V vertex coordinates of the dry foam, introduce 3V coordinates 
corresponding to the three meeting points of the bounding films of the Plateau 
borders for each vertex. The angle conditions on these films are that they meet two 
and two at 0”. They meet with the films that connect Plateau borders to  each other 
a t  angles of 180”. This can clearly be substituted into the formalism in $2, in place 
of the 120” conditions, without too much trouble. The fluxes across interfaces must 
now be computed individually, and von Neumann’s law does not apply, in general. 
The procedures outlined in $2 then go through as before. However, the modelling of 
topology changes requires additional considerations. Furthermore, very small time 
steps will always be required. Bolton & Weaire (1991) have attempted to  capture 
some of all this by a simple ‘decoration’ procedure of the vertices of a dry foam. 

The close agreement between the results for the scaling regime seen in the 
laboratory experiments of Glazier et al. (1987), and the numerics of Weaire & Lei 
(1990) is to  a large extent fortuitous, in our view. We have outlined computational 
issues that cloud the numerical results, and it is not clear that  the experiments 
provide a good realization of the ‘ canonical ’ model of a dry foam. For both a priori 
and a posteriori reasons we believe that treating the entire coupled foam a t  each step 
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of a numerical simulation is absolutely essential. The general idea of a scaling regime, 
as displayed in figures 9, 10 and, particularly, figure 11 seems verified. However, the 
role of long-lived transients and the necessity of working with large systems must be 
constantly kept in mind. 

We mention that it is possible to  generalize the canonical dry foam model to 
include a compressible dispersed phase, in particular a gas obeying the ideal gas law. 
This arises by substituting for the vector Y in (2.5) another vector - 

= ... , M F ,  @I,  @I? ... 7 @,, @pV), (6.1) 

whcrc M I , .  . . , M F  are the masses of the air in the individual bubbles. Fluxes of mass 
across interfaces are now tracked in place of fluxes of area. Such a generalization to 
compressible dispersed phase has been implemented, but the results for diffusive 
relaxation did not appear particularly interesting. However, the resulting elastic 
equilibria, as the surface tension is gradually increased for a fixed mass distribution 
of the dispersed phase, produce intriguing results on bubble differentiation, that  will 
be reported separately. 
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